Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning Classifiers for Imbalanced and Overlapping Data (2210.12446v1)

Published 22 Oct 2022 in cs.LG, cs.IT, and math.IT

Abstract: This study is about inducing classifiers using data that is imbalanced, with a minority class being under-represented in relation to the majority classes. The first section of this research focuses on the main characteristics of data that generate this problem. Following a study of previous, relevant research, a variety of artificial, imbalanced data sets influenced by important elements were created. These data sets were used to create decision trees and rule-based classifiers. The second section of this research looks into how to improve classifiers by pre-processing data with resampling approaches. The results of the following trials are compared to the performance of distinct pre-processing re-sampling methods: two variants of random over-sampling and focused under-sampling NCR. This paper further optimises class imbalance with a new method called Sparsity. The data is made more sparse from its class centers, hence making it more homogenous.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.