Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DIGMN: Dynamic Intent Guided Meta Network for Differentiated User Engagement Forecasting in Online Professional Social Platforms (2210.12402v2)

Published 22 Oct 2022 in cs.LG

Abstract: User engagement prediction plays a critical role for designing interaction strategies to grow user engagement and increase revenue in online social platforms. Through the in-depth analysis of the real-world data from the world's largest professional social platforms, i.e., LinkedIn, we find that users expose diverse engagement patterns, and a major reason for the differences in user engagement patterns is that users have different intents. That is, people have different intents when using LinkedIn, e.g., applying for jobs, building connections, or checking notifications, which shows quite different engagement patterns. Meanwhile, user intents and the corresponding engagement patterns may change over time. Although such pattern differences and dynamics are essential for user engagement prediction, differentiating user engagement patterns based on user dynamic intents for better user engagement forecasting has not received enough attention in previous works. In this paper, we proposed a Dynamic Intent Guided Meta Network (DIGMN), which can explicitly model user intent varying with time and perform differentiated user engagement forecasting. Specifically, we derive some interpretable basic user intents as prior knowledge from data mining and introduce prior intents in explicitly modeling dynamic user intent. Furthermore, based on the dynamic user intent representations, we propose a meta predictor to perform differentiated user engagement forecasting. Through a comprehensive evaluation on LinkedIn anonymous user data, our method outperforms state-of-the-art baselines significantly, i.e., 2.96% and 3.48% absolute error reduction, on coarse-grained and fine-grained user engagement prediction tasks, respectively, demonstrating the effectiveness of our method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.