Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Neural Sound Field Decomposition with Super-resolution of Sound Direction (2210.12345v1)

Published 22 Oct 2022 in cs.SD and eess.AS

Abstract: Sound field decomposition predicts waveforms in arbitrary directions using signals from a limited number of microphones as inputs. Sound field decomposition is fundamental to downstream tasks, including source localization, source separation, and spatial audio reproduction. Conventional sound field decomposition methods such as Ambisonics have limited spatial decomposition resolution. This paper proposes a learning-based Neural Sound field Decomposition (NeSD) framework to allow sound field decomposition with fine spatial direction resolution, using recordings from microphone capsules of a few microphones at arbitrary positions. The inputs of a NeSD system include microphone signals, microphone positions, and queried directions. The outputs of a NeSD include the waveform and the presence probability of a queried position. We model the NeSD systems respectively with different neural networks, including fully connected, time delay, and recurrent neural networks. We show that the NeSD systems outperform conventional Ambisonics and DOANet methods in sound field decomposition and source localization on speech, music, and sound events datasets. Demos are available at https://www.youtube.com/watch?v=0GIr6doj3BQ.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: