Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

P$^3$LM: Probabilistically Permuted Prophet Language Modeling for Generative Pre-Training (2210.12339v1)

Published 22 Oct 2022 in cs.CL

Abstract: Conventional autoregressive left-to-right (L2R) sequence generation faces two issues during decoding: limited to unidirectional target sequence modeling, and constrained on strong local dependencies. To address the aforementioned problem, we propose P$3$LM, a probabilistically permuted prophet LLM, which strengthens the modeling of bidirectional information and long token dependencies for sequence generation. Specifically, P$3$LM learns to generate tokens in permuted order upon an order-aware transformer decoder, as well as to generate the corresponding future $N$ tokens with a multi-stream attention mechanism. Extensive experiments are conducted on the GLGE benchmark, which includes four datasets for summarization, two for question generation, one for conversational question answering, and one for dialog response generation, where P$3$LM achieves state-of-the-art results compared with strong publicly available generative pre-training methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.