Guided contrastive self-supervised pre-training for automatic speech recognition (2210.12335v1)
Abstract: Contrastive Predictive Coding (CPC) is a representation learning method that maximizes the mutual information between intermediate latent representations and the output of a given model. It can be used to effectively initialize the encoder of an Automatic Speech Recognition (ASR) model. We present a novel modification of CPC called Guided Contrastive Predictive Coding (GCPC). Our proposed method maximizes the mutual information between representations from a prior-knowledge model and the output of the model being pre-trained, allowing prior knowledge injection during pre-training. We validate our method on 3 ASR tasks: German, French and English. Our method outperforms CPC pre-training on all three datasets, reducing the Word Error Rate (WER) by 4.44%, 6.55% and 15.43% relative on the German, French and English (Librispeech) tasks respectively, compared to training from scratch, while CPC pre-training only brings 2.96%, 1.01% and 14.39% relative WER reduction respectively.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.