Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reducing Training Sample Memorization in GANs by Training with Memorization Rejection (2210.12231v1)

Published 21 Oct 2022 in cs.LG

Abstract: Generative adversarial network (GAN) continues to be a popular research direction due to its high generation quality. It is observed that many state-of-the-art GANs generate samples that are more similar to the training set than a holdout testing set from the same distribution, hinting some training samples are implicitly memorized in these models. This memorization behavior is unfavorable in many applications that demand the generated samples to be sufficiently distinct from known samples. Nevertheless, it is unclear whether it is possible to reduce memorization without compromising the generation quality. In this paper, we propose memorization rejection, a training scheme that rejects generated samples that are near-duplicates of training samples during training. Our scheme is simple, generic and can be directly applied to any GAN architecture. Experiments on multiple datasets and GAN models validate that memorization rejection effectively reduces training sample memorization, and in many cases does not sacrifice the generation quality. Code to reproduce the experiment results can be found at $\texttt{https://github.com/jybai/MRGAN}$.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub