Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Audio-to-Intent Using Acoustic-Textual Subword Representations from End-to-End ASR (2210.12134v1)

Published 21 Oct 2022 in cs.CL, cs.HC, cs.SD, and eess.AS

Abstract: Accurate prediction of the user intent to interact with a voice assistant (VA) on a device (e.g. on the phone) is critical for achieving naturalistic, engaging, and privacy-centric interactions with the VA. To this end, we present a novel approach to predict the user's intent (the user speaking to the device or not) directly from acoustic and textual information encoded at subword tokens which are obtained via an end-to-end ASR model. Modeling directly the subword tokens, compared to modeling of the phonemes and/or full words, has at least two advantages: (i) it provides a unique vocabulary representation, where each token has a semantic meaning, in contrast to the phoneme-level representations, (ii) each subword token has a reusable "sub"-word acoustic pattern (that can be used to construct multiple full words), resulting in a largely reduced vocabulary space than of the full words. To learn the subword representations for the audio-to-intent classification, we extract: (i) acoustic information from an E2E-ASR model, which provides frame-level CTC posterior probabilities for the subword tokens, and (ii) textual information from a pre-trained continuous bag-of-words model capturing the semantic meaning of the subword tokens. The key to our approach is the way it combines acoustic subword-level posteriors with text information using the notion of positional-encoding in order to account for multiple ASR hypotheses simultaneously. We show that our approach provides more robust and richer representations for audio-to-intent classification, and is highly accurate with correctly mitigating 93.3% of unintended user audio from invoking the smart assistant at 99% true positive rate.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube