Papers
Topics
Authors
Recent
2000 character limit reached

Robust Singular Values based on L1-norm PCA (2210.12097v1)

Published 21 Oct 2022 in eess.SP and cs.LG

Abstract: Singular-Value Decomposition (SVD) is a ubiquitous data analysis method in engineering, science, and statistics. Singular-value estimation, in particular, is of critical importance in an array of engineering applications, such as channel estimation in communication systems, electromyography signal analysis, and image compression, to name just a few. Conventional SVD of a data matrix coincides with standard Principal-Component Analysis (PCA). The L2-norm (sum of squared values) formulation of PCA promotes peripheral data points and, thus, makes PCA sensitive against outliers. Naturally, SVD inherits this outlier sensitivity. In this work, we present a novel robust non-parametric method for SVD and singular-value estimation based on a L1-norm (sum of absolute values) formulation, which we name L1-cSVD. Accordingly, the proposed method demonstrates sturdy resistance against outliers and can facilitate more reliable data analysis and processing in a wide range of engineering applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.