Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Do Vision-and-Language Transformers Learn Grounded Predicate-Noun Dependencies? (2210.12079v1)

Published 21 Oct 2022 in cs.CL and cs.CV

Abstract: Recent advances in vision-and-language modeling have seen the development of Transformer architectures that achieve remarkable performance on multimodal reasoning tasks. Yet, the exact capabilities of these black-box models are still poorly understood. While much of previous work has focused on studying their ability to learn meaning at the word-level, their ability to track syntactic dependencies between words has received less attention. We take a first step in closing this gap by creating a new multimodal task targeted at evaluating understanding of predicate-noun dependencies in a controlled setup. We evaluate a range of state-of-the-art models and find that their performance on the task varies considerably, with some models performing relatively well and others at chance level. In an effort to explain this variability, our analyses indicate that the quality (and not only sheer quantity) of pretraining data is essential. Additionally, the best performing models leverage fine-grained multimodal pretraining objectives in addition to the standard image-text matching objectives. This study highlights that targeted and controlled evaluations are a crucial step for a precise and rigorous test of the multimodal knowledge of vision-and-LLMs.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.