Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The privacy issue of counterfactual explanations: explanation linkage attacks (2210.12051v1)

Published 21 Oct 2022 in cs.LG, cs.CR, and cs.CY

Abstract: Black-box machine learning models are being used in more and more high-stakes domains, which creates a growing need for Explainable AI (XAI). Unfortunately, the use of XAI in machine learning introduces new privacy risks, which currently remain largely unnoticed. We introduce the explanation linkage attack, which can occur when deploying instance-based strategies to find counterfactual explanations. To counter such an attack, we propose k-anonymous counterfactual explanations and introduce pureness as a new metric to evaluate the validity of these k-anonymous counterfactual explanations. Our results show that making the explanations, rather than the whole dataset, k- anonymous, is beneficial for the quality of the explanations.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.