Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Shift-Reduce Task-Oriented Semantic Parsing with Stack-Transformers (2210.11984v2)

Published 21 Oct 2022 in cs.CL

Abstract: Intelligent voice assistants, such as Apple Siri and Amazon Alexa, are widely used nowadays. These task-oriented dialogue systems require a semantic parsing module in order to process user utterances and understand the action to be performed. This semantic parsing component was initially implemented by rule-based or statistical slot-filling approaches for processing simple queries; however, the appearance of more complex utterances demanded the application of shift-reduce parsers or sequence-to-sequence models. Although shift-reduce approaches were initially considered the most promising option, the emergence of sequence-to-sequence neural systems has propelled them to the forefront as the highest-performing method for this particular task. In this article, we advance the research on shift-reduce semantic parsing for task-oriented dialogue. We implement novel shift-reduce parsers that rely on Stack-Transformers. This framework allows to adequately model transition systems on the Transformer neural architecture, notably boosting shift-reduce parsing performance. Furthermore, our approach goes beyond the conventional top-down algorithm: we incorporate alternative bottom-up and in-order transition systems derived from constituency parsing into the realm of task-oriented parsing. We extensively test our approach on multiple domains from the Facebook TOP benchmark, improving over existing shift-reduce parsers and state-of-the-art sequence-to-sequence models in both high-resource and low-resource settings. We also empirically prove that the in-order algorithm substantially outperforms the commonly-used top-down strategy. Through the creation of innovative transition systems and harnessing the capabilities of a robust neural architecture, our study showcases the superiority of shift-reduce parsers over leading sequence-to-sequence methods on the main benchmark.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets