Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CobNet: Cross Attention on Object and Background for Few-Shot Segmentation (2210.11968v2)

Published 21 Oct 2022 in cs.CV

Abstract: Few-shot segmentation aims to segment images containing objects from previously unseen classes using only a few annotated samples. Most current methods focus on using object information extracted, with the aid of human annotations, from support images to identify the same objects in new query images. However, background information can also be useful to distinguish objects from their surroundings. Hence, some previous methods also extract background information from the support images. In this paper, we argue that such information is of limited utility, as the background in different images can vary widely. To overcome this issue, we propose CobNet which utilises information about the background that is extracted from the query images without annotations of those images. Experiments show that our method achieves a mean Intersection-over-Union score of 61.4% and 37.8% for 1-shot segmentation on PASCAL-5i and COCO-20i respectively, outperforming previous methods. It is also shown to produce state-of-the-art performances of 53.7% for weakly-supervised few-shot segmentation, where no annotations are provided for the support images.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.