Papers
Topics
Authors
Recent
2000 character limit reached

Boosting vision transformers for image retrieval (2210.11909v1)

Published 21 Oct 2022 in cs.CV, cs.IR, and cs.LG

Abstract: Vision transformers have achieved remarkable progress in vision tasks such as image classification and detection. However, in instance-level image retrieval, transformers have not yet shown good performance compared to convolutional networks. We propose a number of improvements that make transformers outperform the state of the art for the first time. (1) We show that a hybrid architecture is more effective than plain transformers, by a large margin. (2) We introduce two branches collecting global (classification token) and local (patch tokens) information, from which we form a global image representation. (3) In each branch, we collect multi-layer features from the transformer encoder, corresponding to skip connections across distant layers. (4) We enhance locality of interactions at the deeper layers of the encoder, which is the relative weakness of vision transformers. We train our model on all commonly used training sets and, for the first time, we make fair comparisons separately per training set. In all cases, we outperform previous models based on global representation. Public code is available at https://github.com/dealicious-inc/DToP.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.