Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep LSTM Spoken Term Detection using Wav2Vec 2.0 Recognizer (2210.11885v1)

Published 21 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: In recent years, the standard hybrid DNN-HMM speech recognizers are outperformed by the end-to-end speech recognition systems. One of the very promising approaches is the grapheme Wav2Vec 2.0 model, which uses the self-supervised pretraining approach combined with transfer learning of the fine-tuned speech recognizer. Since it lacks the pronunciation vocabulary and LLM, the approach is suitable for tasks where obtaining such models is not easy or almost impossible. In this paper, we use the Wav2Vec speech recognizer in the task of spoken term detection over a large set of spoken documents. The method employs a deep LSTM network which maps the recognized hypothesis and the searched term into a shared pronunciation embedding space in which the term occurrences and the assigned scores are easily computed. The paper describes a bootstrapping approach that allows the transfer of the knowledge contained in traditional pronunciation vocabulary of DNN-HMM hybrid ASR into the context of grapheme-based Wav2Vec. The proposed method outperforms the previously published system based on the combination of the DNN-HMM hybrid ASR and phoneme recognizer by a large margin on the MALACH data in both English and Czech languages.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.