Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities (2210.11846v2)

Published 21 Oct 2022 in cs.AI

Abstract: While AI algorithms have shown remarkable success in various fields, their lack of transparency hinders their application to real-life tasks. Although explanations targeted at non-experts are necessary for user trust and human-AI collaboration, the majority of explanation methods for AI are focused on developers and expert users. Counterfactual explanations are local explanations that offer users advice on what can be changed in the input for the output of the black-box model to change. Counterfactuals are user-friendly and provide actionable advice for achieving the desired output from the AI system. While extensively researched in supervised learning, there are few methods applying them to reinforcement learning (RL). In this work, we explore the reasons for the underrepresentation of a powerful explanation method in RL. We start by reviewing the current work in counterfactual explanations in supervised learning. Additionally, we explore the differences between counterfactual explanations in supervised learning and RL and identify the main challenges that prevent the adoption of methods from supervised in reinforcement learning. Finally, we redefine counterfactuals for RL and propose research directions for implementing counterfactuals in RL.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: