Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Amos: An Adam-style Optimizer with Adaptive Weight Decay towards Model-Oriented Scale (2210.11693v2)

Published 21 Oct 2022 in cs.LG

Abstract: We present Amos, a stochastic gradient-based optimizer designed for training deep neural networks. It can be viewed as an Adam optimizer with theoretically supported, adaptive learning-rate decay and weight decay. A key insight behind Amos is that it leverages model-specific information to determine the initial learning-rate and decaying schedules. When used for pre-training BERT variants and T5, Amos consistently converges faster than the state-of-the-art settings of AdamW, achieving better validation loss within <=70% training steps and time, while requiring <=51% memory for slot variables. Our code is open-sourced at: https://github.com/google-research/jestimator

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com