Papers
Topics
Authors
Recent
Search
2000 character limit reached

Amos: An Adam-style Optimizer with Adaptive Weight Decay towards Model-Oriented Scale

Published 21 Oct 2022 in cs.LG | (2210.11693v2)

Abstract: We present Amos, a stochastic gradient-based optimizer designed for training deep neural networks. It can be viewed as an Adam optimizer with theoretically supported, adaptive learning-rate decay and weight decay. A key insight behind Amos is that it leverages model-specific information to determine the initial learning-rate and decaying schedules. When used for pre-training BERT variants and T5, Amos consistently converges faster than the state-of-the-art settings of AdamW, achieving better validation loss within <=70% training steps and time, while requiring <=51% memory for slot variables. Our code is open-sourced at: https://github.com/google-research/jestimator

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.