Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Semi-supervised End-to-end Automatic Speech Recognition using CycleGAN and Inter-domain Losses (2210.11642v1)

Published 20 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: We propose a novel method that combines CycleGAN and inter-domain losses for semi-supervised end-to-end automatic speech recognition. Inter-domain loss targets the extraction of an intermediate shared representation of speech and text inputs using a shared network. CycleGAN uses cycle-consistent loss and the identity mapping loss to preserve relevant characteristics of the input feature after converting from one domain to another. As such, both approaches are suitable to train end-to-end models on unpaired speech-text inputs. In this paper, we exploit the advantages from both inter-domain loss and CycleGAN to achieve better shared representation of unpaired speech and text inputs and thus improve the speech-to-text mapping. Our experimental results on the WSJ eval92 and Voxforge (non English) show 8~8.5% character error rate reduction over the baseline, and the results on LibriSpeech test_clean also show noticeable improvement.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.