Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Can Domains Be Transferred Across Languages in Multi-Domain Multilingual Neural Machine Translation? (2210.11628v1)

Published 20 Oct 2022 in cs.CL

Abstract: Previous works mostly focus on either multilingual or multi-domain aspects of neural machine translation (NMT). This paper investigates whether the domain information can be transferred across languages on the composition of multi-domain and multilingual NMT, particularly for the incomplete data condition where in-domain bitext is missing for some language pairs. Our results in the curated leave-one-domain-out experiments show that multi-domain multilingual (MDML) NMT can boost zero-shot translation performance up to +10 gains on BLEU, as well as aid the generalisation of multi-domain NMT to the missing domain. We also explore strategies for effective integration of multilingual and multi-domain NMT, including language and domain tag combination and auxiliary task training. We find that learning domain-aware representations and adding target-language tags to the encoder leads to effective MDML-NMT.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.