Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The VolcTrans System for WMT22 Multilingual Machine Translation Task (2210.11599v1)

Published 20 Oct 2022 in cs.CL

Abstract: This report describes our VolcTrans system for the WMT22 shared task on large-scale multilingual machine translation. We participated in the unconstrained track which allows the use of external resources. Our system is a transformerbased multilingual model trained on data from multiple sources including the public training set from the data track, NLLB data provided by Meta AI, self-collected parallel corpora, and pseudo bitext from back-translation. A series of heuristic rules clean both bilingual and monolingual texts. On the official test set, our system achieves 17.3 BLEU, 21.9 spBLEU, and 41.9 chrF2++ on average over all language pairs. The average inference speed is 11.5 sentences per second using a single Nvidia Tesla V100 GPU. Our code and trained models are available at https://github.com/xian8/wmt22

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.