Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multimodal Neural Network For Demand Forecasting (2210.11502v1)

Published 20 Oct 2022 in cs.LG and cs.AI

Abstract: Demand forecasting applications have immensely benefited from the state-of-the-art Deep Learning methods used for time series forecasting. Traditional uni-modal models are predominantly seasonality driven which attempt to model the demand as a function of historic sales along with information on holidays and promotional events. However, accurate and robust sales forecasting calls for accommodating multiple other factors, such as natural calamities, pandemics, elections, etc., impacting the demand for products and product categories in general. We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information. Further, we fuse information from general product trends published by Google trends. Empirical results show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques on a real-world supermarket dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.