Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Neural Network For Demand Forecasting (2210.11502v1)

Published 20 Oct 2022 in cs.LG and cs.AI

Abstract: Demand forecasting applications have immensely benefited from the state-of-the-art Deep Learning methods used for time series forecasting. Traditional uni-modal models are predominantly seasonality driven which attempt to model the demand as a function of historic sales along with information on holidays and promotional events. However, accurate and robust sales forecasting calls for accommodating multiple other factors, such as natural calamities, pandemics, elections, etc., impacting the demand for products and product categories in general. We propose a multi-modal sales forecasting network that combines real-life events from news articles with traditional data such as historical sales and holiday information. Further, we fuse information from general product trends published by Google trends. Empirical results show statistically significant improvements in the SMAPE error metric with an average improvement of 7.37% against the existing state-of-the-art sales forecasting techniques on a real-world supermarket dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.