Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neural Co-Processors for Restoring Brain Function: Results from a Cortical Model of Grasping (2210.11478v2)

Published 19 Oct 2022 in q-bio.NC and cs.AI

Abstract: Objective: A major challenge in designing closed-loop brain-computer interfaces is finding optimal stimulation patterns as a function of ongoing neural activity for different subjects and objectives. Approach: To achieve goal-directed closed-loop neurostimulation, we propose "neural co-processors" which use artificial neural networks and deep learning to learn optimal closed-loop stimulation policies, shaping neural activity and bridging injured neural circuits for targeted repair and rehabilitation. The co-processor adapts the stimulation policy as the biological circuit itself adapts to the stimulation, achieving a form of brain-device co-adaptation. Here we use simulations to lay the groundwork for future in vivo tests of neural co-processors. We leverage a cortical model of grasping, to which we applied various forms of simulated lesions, allowing us to develop the critical learning algorithms and study adaptations to non-stationarity. Main results: Our simulations show the ability of a neural co-processor to learn a stimulation policy using a supervised learning approach, and to adapt that policy as the underlying brain and sensors change. Our co-processor successfully co-adapted with the simulated brain to accomplish the reach-and-grasp task after a variety of lesions were applied, achieving recovery towards healthy function. Significance: Our results provide the first proof-of-concept demonstration of a co-processor for adaptive activity-dependent closed-loop neurostimulation, optimizing for a rehabilitation goal. While a gap remains between simulations and applications, our results provide insights on how co-processors may be developed for learning complex adaptive stimulation policies for a variety of neural rehabilitation and neuroprosthetic applications.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.