Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Improving Data Quality with Training Dynamics of Gradient Boosting Decision Trees (2210.11327v2)

Published 20 Oct 2022 in cs.LG and stat.ML

Abstract: Real world datasets contain incorrectly labeled instances that hamper the performance of the model and, in particular, the ability to generalize out of distribution. Also, each example might have different contribution towards learning. This motivates studies to better understanding of the role of data instances with respect to their contribution in good metrics in models. In this paper we propose a method based on metrics computed from training dynamics of Gradient Boosting Decision Trees (GBDTs) to assess the behavior of each training example. We focus on datasets containing mostly tabular or structured data, for which the use of Decision Trees ensembles are still the state-of-the-art in terms of performance. Our methods achieved the best results overall when compared with confident learning, direct heuristics and a robust boosting algorithm. We show results on detecting noisy labels in order clean datasets, improving models' metrics in synthetic and real public datasets, as well as on a industry case in which we deployed a model based on the proposed solution.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: