Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Image-Text Retrieval with Binary and Continuous Label Supervision (2210.11319v1)

Published 20 Oct 2022 in cs.CV and cs.MM

Abstract: Most image-text retrieval work adopts binary labels indicating whether a pair of image and text matches or not. Such a binary indicator covers only a limited subset of image-text semantic relations, which is insufficient to represent relevance degrees between images and texts described by continuous labels such as image captions. The visual-semantic embedding space obtained by learning binary labels is incoherent and cannot fully characterize the relevance degrees. In addition to the use of binary labels, this paper further incorporates continuous pseudo labels (generally approximated by text similarity between captions) to indicate the relevance degrees. To learn a coherent embedding space, we propose an image-text retrieval framework with Binary and Continuous Label Supervision (BCLS), where binary labels are used to guide the retrieval model to learn limited binary correlations, and continuous labels are complementary to the learning of image-text semantic relations. For the learning of binary labels, we improve the common Triplet ranking loss with Soft Negative mining (Triplet-SN) to improve convergence. For the learning of continuous labels, we design Kendall ranking loss inspired by Kendall rank correlation coefficient (Kendall), which improves the correlation between the similarity scores predicted by the retrieval model and the continuous labels. To mitigate the noise introduced by the continuous pseudo labels, we further design Sliding Window sampling and Hard Sample mining strategy (SW-HS) to alleviate the impact of noise and reduce the complexity of our framework to the same order of magnitude as the triplet ranking loss. Extensive experiments on two image-text retrieval benchmarks demonstrate that our method can improve the performance of state-of-the-art image-text retrieval models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube