Papers
Topics
Authors
Recent
2000 character limit reached

Neural ODEs as Feedback Policies for Nonlinear Optimal Control (2210.11245v2)

Published 20 Oct 2022 in math.OC, cs.AI, cs.SY, and eess.SY

Abstract: Neural ordinary differential equations (Neural ODEs) define continuous time dynamical systems with neural networks. The interest in their application for modelling has sparked recently, spanning hybrid system identification problems and time series analysis. In this work we propose the use of a neural control policy capable of satisfying state and control constraints to solve nonlinear optimal control problems. The control policy optimization is posed as a Neural ODE problem to efficiently exploit the availability of a dynamical system model. We showcase the efficacy of this type of deterministic neural policies in two constrained systems: the controlled Van der Pol system and a bioreactor control problem. This approach represents a practical approximation to the intractable closed-loop solution of nonlinear control problems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube