A lower confidence sequence for the changing mean of non-negative right heavy-tailed observations with bounded mean (2210.11133v1)
Abstract: A confidence sequence (CS) is an anytime-valid sequential inference primitive which produces an adapted sequence of sets for a predictable parameter sequence with a time-uniform coverage guarantee. This work constructs a non-parametric non-asymptotic lower CS for the running average conditional expectation whose slack converges to zero given non-negative right heavy-tailed observations with bounded mean. Specifically, when the variance is finite the approach dominates the empirical Bernstein supermartingale of Howard et. al.; with infinite variance, can adapt to a known or unknown $(1 + \delta)$-th moment bound; and can be efficiently approximated using a sublinear number of sufficient statistics. In certain cases this lower CS can be converted into a closed-interval CS whose width converges to zero, e.g., any bounded realization, or post contextual-bandit inference with bounded rewards and unbounded importance weights. A reference implementation and example simulations demonstrate the technique.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.