Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A lower confidence sequence for the changing mean of non-negative right heavy-tailed observations with bounded mean (2210.11133v1)

Published 20 Oct 2022 in stat.ML and cs.LG

Abstract: A confidence sequence (CS) is an anytime-valid sequential inference primitive which produces an adapted sequence of sets for a predictable parameter sequence with a time-uniform coverage guarantee. This work constructs a non-parametric non-asymptotic lower CS for the running average conditional expectation whose slack converges to zero given non-negative right heavy-tailed observations with bounded mean. Specifically, when the variance is finite the approach dominates the empirical Bernstein supermartingale of Howard et. al.; with infinite variance, can adapt to a known or unknown $(1 + \delta)$-th moment bound; and can be efficiently approximated using a sublinear number of sufficient statistics. In certain cases this lower CS can be converted into a closed-interval CS whose width converges to zero, e.g., any bounded realization, or post contextual-bandit inference with bounded rewards and unbounded importance weights. A reference implementation and example simulations demonstrate the technique.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)