Papers
Topics
Authors
Recent
2000 character limit reached

Robust Image Registration with Absent Correspondences in Pre-operative and Follow-up Brain MRI Scans of Diffuse Glioma Patients (2210.11045v2)

Published 20 Oct 2022 in eess.IV and cs.CV

Abstract: Registration of pre-operative and follow-up brain MRI scans is challenging due to the large variation of tissue appearance and missing correspondences in tumour recurrence regions caused by tumour mass effect. Although recent deep learning-based deformable registration methods have achieved remarkable success in various medical applications, most of them are not capable of registering images with pathologies. In this paper, we propose a 3-step registration pipeline for pre-operative and follow-up brain MRI scans that consists of 1) a multi-level affine registration, 2) a conditional deep Laplacian pyramid image registration network (cLapIRN) with forward-backward consistency constraint, and 3) a non-linear instance optimization method. We apply the method to the Brain Tumor Sequence Registration (BraTS-Reg) Challenge. Our method achieves accurate and robust registration of brain MRI scans with pathologies, which achieves a median absolute error of 1.64 mm and 88\% of successful registration rate in the validation set of BraTS-Reg challenge. Our method ranks 1st place in the 2022 MICCAI BraTS-Reg challenge.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.