Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Substring Density Estimation from Traces (2210.10917v1)

Published 19 Oct 2022 in cs.IT, cs.DS, math.IT, math.PR, math.ST, and stat.TH

Abstract: In the trace reconstruction problem, one seeks to reconstruct a binary string $s$ from a collection of traces, each of which is obtained by passing $s$ through a deletion channel. It is known that $\exp(\tilde O(n{1/5}))$ traces suffice to reconstruct any length-$n$ string with high probability. We consider a variant of the trace reconstruction problem where the goal is to recover a "density map" that indicates the locations of each length-$k$ substring throughout $s$. We show that $\epsilon{-2}\cdot \text{poly}(n)$ traces suffice to recover the density map with error at most $\epsilon$. As a result, when restricted to a set of source strings whose minimum "density map distance" is at least $1/\text{poly}(n)$, the trace reconstruction problem can be solved with polynomially many traces.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.