Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Exiting the Simulation: The Road to Robust and Resilient Autonomous Vehicles at Scale (2210.10876v1)

Published 19 Oct 2022 in cs.RO and cs.AI

Abstract: In the past two decades, autonomous driving has been catalyzed into reality by the growing capabilities of machine learning. This paradigm shift possesses significant potential to transform the future of mobility and reshape our society as a whole. With the recent advances in perception, planning, and control capabilities, autonomous driving technologies are being rolled out for public trials, yet we remain far from being able to rigorously ensure the resilient operations of these systems across the long-tailed nature of the driving environment. Given the limitations of real-world testing, autonomous vehicle simulation stands as the critical component in exploring the edge of autonomous driving capabilities, developing the robust behaviors required for successful real-world operation, and enabling the extraction of hidden risks from these complex systems prior to deployment. This paper presents the current state-of-the-art simulation frameworks and methodologies used in the development of autonomous driving systems, with a focus on outlining how simulation is used to build the resiliency required for real-world operation and the methods developed to bridge the gap between simulation and reality. A synthesis of the key challenges surrounding autonomous driving simulation is presented, specifically highlighting the opportunities to further advance the ability to continuously learn in simulation and effectively transfer the learning into the real-world - enabling autonomous vehicles to exit the guardrails of simulation and deliver robust and resilient operations at scale.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.