Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

N-Best Hypotheses Reranking for Text-To-SQL Systems (2210.10668v1)

Published 19 Oct 2022 in cs.CL and cs.AI

Abstract: Text-to-SQL task maps natural language utterances to structured queries that can be issued to a database. State-of-the-art (SOTA) systems rely on finetuning large, pre-trained LLMs in conjunction with constrained decoding applying a SQL parser. On the well established Spider dataset, we begin with Oracle studies: specifically, choosing an Oracle hypothesis from a SOTA model's 10-best list, yields a $7.7\%$ absolute improvement in both exact match (EM) and execution (EX) accuracy, showing significant potential improvements with reranking. Identifying coherence and correctness as reranking approaches, we design a model generating a query plan and propose a heuristic schema linking algorithm. Combining both approaches, with T5-Large, we obtain a consistent $1\% $ improvement in EM accuracy, and a $~2.5\%$ improvement in EX, establishing a new SOTA for this task. Our comprehensive error studies on DEV data show the underlying difficulty in making progress on this task.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.