Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robot Navigation with Reinforcement Learned Path Generation and Fine-Tuned Motion Control (2210.10639v1)

Published 19 Oct 2022 in cs.RO and cs.AI

Abstract: In this paper, we propose a novel reinforcement learning (RL) based path generation (RL-PG) approach for mobile robot navigation without a prior exploration of an unknown environment. Multiple predictive path points are dynamically generated by a deep Markov model optimized using RL approach for robot to track. To ensure the safety when tracking the predictive points, the robot's motion is fine-tuned by a motion fine-tuning module. Such an approach, using the deep Markov model with RL algorithm for planning, focuses on the relationship between adjacent path points. We analyze the benefits that our proposed approach are more effective and are with higher success rate than RL-Based approach DWA-RL and a traditional navigation approach APF. We deploy our model on both simulation and physical platforms and demonstrate our model performs robot navigation effectively and safely.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.