Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep neural network expressivity for optimal stopping problems (2210.10443v1)

Published 19 Oct 2022 in math.PR, cs.LG, cs.NA, math.NA, and q-fin.MF

Abstract: This article studies deep neural network expression rates for optimal stopping problems of discrete-time Markov processes on high-dimensional state spaces. A general framework is established in which the value function and continuation value of an optimal stopping problem can be approximated with error at most $\varepsilon$ by a deep ReLU neural network of size at most $\kappa d{\mathfrak{q}} \varepsilon{-\mathfrak{r}}$. The constants $\kappa,\mathfrak{q},\mathfrak{r} \geq 0$ do not depend on the dimension $d$ of the state space or the approximation accuracy $\varepsilon$. This proves that deep neural networks do not suffer from the curse of dimensionality when employed to solve optimal stopping problems. The framework covers, for example, exponential L\'evy models, discrete diffusion processes and their running minima and maxima. These results mathematically justify the use of deep neural networks for numerically solving optimal stopping problems and pricing American options in high dimensions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Lukas Gonon (34 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.