Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hierarchical Reinforcement Learning for Furniture Layout in Virtual Indoor Scenes (2210.10431v1)

Published 19 Oct 2022 in cs.CV and cs.AI

Abstract: In real life, the decoration of 3D indoor scenes through designing furniture layout provides a rich experience for people. In this paper, we explore the furniture layout task as a Markov decision process (MDP) in virtual reality, which is solved by hierarchical reinforcement learning (HRL). The goal is to produce a proper two-furniture layout in the virtual reality of the indoor scenes. In particular, we first design a simulation environment and introduce the HRL formulation for a two-furniture layout. We then apply a hierarchical actor-critic algorithm with curriculum learning to solve the MDP. We conduct our experiments on a large-scale real-world interior layout dataset that contains industrial designs from professional designers. Our numerical results demonstrate that the proposed model yields higher-quality layouts as compared with the state-of-art models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)