Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Real Image Super-Resolution using GAN through modeling of LR and HR process (2210.10413v1)

Published 19 Oct 2022 in cs.CV and eess.IV

Abstract: The current existing deep image super-resolution methods usually assume that a Low Resolution (LR) image is bicubicly downscaled of a High Resolution (HR) image. However, such an ideal bicubic downsampling process is different from the real LR degradations, which usually come from complicated combinations of different degradation processes, such as camera blur, sensor noise, sharpening artifacts, JPEG compression, and further image editing, and several times image transmission over the internet and unpredictable noises. It leads to the highly ill-posed nature of the inverse upscaling problem. To address these issues, we propose a GAN-based SR approach with learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions and then synthesize paired LR/HR training data to train the generalized SR model to real image degradations. We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com