Emergent Mind

Near-optimal Coresets for Robust Clustering

(2210.10394)
Published Oct 19, 2022 in cs.DS

Abstract

We consider robust clustering problems in $\mathbb{R}d$, specifically $k$-clustering problems (e.g., $k$-Median and $k$-Means with $m$ outliers, where the cost for a given center set $C \subset \mathbb{R}d$ aggregates the distances from $C$ to all but the furthest $m$ data points, instead of all points as in classical clustering. We focus on the $\epsilon$-coreset for robust clustering, a small proxy of the dataset that preserves the clustering cost within $\epsilon$-relative error for all center sets. Our main result is an $\epsilon$-coreset of size $O(m + \mathrm{poly}(k \epsilon{-1}))$ that can be constructed in near-linear time. This significantly improves previous results, which either suffers an exponential dependence on $(m + k)$ [Feldman and Schulman, SODA'12], or has a weaker bi-criteria guarantee [Huang et al., FOCS'18]. Furthermore, we show this dependence in $m$ is nearly-optimal, and the fact that it is isolated from other factors may be crucial for dealing with large number of outliers. We construct our coresets by adapting to the outlier setting a recent framework [Braverman et al., FOCS'22] which was designed for capacity-constrained clustering, overcoming a new challenge that the participating terms in the cost, particularly the excluded $m$ outlier points, are dependent on the center set $C$. We validate our coresets on various datasets, and we observe a superior size-accuracy tradeoff compared with popular baselines including uniform sampling and sensitivity sampling. We also achieve a significant speedup of existing approximation algorithms for robust clustering using our coresets.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.