Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SignReLU neural network and its approximation ability (2210.10264v3)

Published 19 Oct 2022 in cs.LG, cs.GT, eess.IV, and math.FA

Abstract: Deep neural networks (DNNs) have garnered significant attention in various fields of science and technology in recent years. Activation functions define how neurons in DNNs process incoming signals for them. They are essential for learning non-linear transformations and for performing diverse computations among successive neuron layers. In the last few years, researchers have investigated the approximation ability of DNNs to explain their power and success. In this paper, we explore the approximation ability of DNNs using a different activation function, called SignReLU. Our theoretical results demonstrate that SignReLU networks outperform rational and ReLU networks in terms of approximation performance. Numerical experiments are conducted comparing SignReLU with the existing activations such as ReLU, Leaky ReLU, and ELU, which illustrate the competitive practical performance of SignReLU.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.