Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Rethinking Prototypical Contrastive Learning through Alignment, Uniformity and Correlation (2210.10194v1)

Published 18 Oct 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Contrastive self-supervised learning (CSL) with a prototypical regularization has been introduced in learning meaningful representations for downstream tasks that require strong semantic information. However, to optimize CSL with a loss that performs the prototypical regularization aggressively, e.g., the ProtoNCE loss, might cause the "coagulation" of examples in the embedding space. That is, the intra-prototype diversity of samples collapses to trivial solutions for their prototype being well-separated from others. Motivated by previous works, we propose to mitigate this phenomenon by learning Prototypical representation through Alignment, Uniformity and Correlation (PAUC). Specifically, the ordinary ProtoNCE loss is revised with: (1) an alignment loss that pulls embeddings from positive prototypes together; (2) a uniformity loss that distributes the prototypical level features uniformly; (3) a correlation loss that increases the diversity and discriminability between prototypical level features. We conduct extensive experiments on various benchmarks where the results demonstrate the effectiveness of our method in improving the quality of prototypical contrastive representations. Particularly, in the classification down-stream tasks with linear probes, our proposed method outperforms the state-of-the-art instance-wise and prototypical contrastive learning methods on the ImageNet-100 dataset by 2.96% and the ImageNet-1K dataset by 2.46% under the same settings of batch size and epochs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube