Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Graph Attention Networks Unveil Determinants of Intra- and Inter-city Health Disparity (2210.10142v2)

Published 18 Oct 2022 in cs.LG and cs.CY

Abstract: Understanding the determinants underlying variations in urban health status is important for informing urban design and planning, as well as public health policies. Multiple heterogeneous urban features could modulate the prevalence of diseases across different neighborhoods in cities and across different cities. This study examines heterogeneous features related to socio-demographics, population activity, mobility, and the built environment and their non-linear interactions to examine intra- and inter-city disparity in prevalence of four disease types: obesity, diabetes, cancer, and heart disease. Features related to population activity, mobility, and facility density are obtained from large-scale anonymized mobility data. These features are used in training and testing graph attention network (GAT) models to capture non-linear feature interactions as well as spatial interdependence among neighborhoods. We tested the models in five U.S. cities across the four disease types. The results show that the GAT model can predict the health status of people in neighborhoods based on the top five determinant features. The findings unveil that population activity and built-environment features along with socio-demographic features differentiate the health status of neighborhoods to such a great extent that a GAT model could predict the health status using these features with high accuracy. The results also show that the model trained on one city can predict health status in another city with high accuracy, allowing us to quantify the inter-city similarity and discrepancy in health status. The model and findings provide novel approaches and insights for urban designers, planners, and public health officials to better understand and improve health disparities in cities by considering the significant determinant features and their interactions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.