Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multivariate Super-Resolution without Separation (2210.09979v1)

Published 18 Oct 2022 in math.OC, cs.IT, and math.IT

Abstract: In this paper we study the high-dimensional super-resolution imaging problem. Here we are given an image of a number of point sources of light whose locations and intensities are unknown. The image is pixelized and is blurred by a known point-spread function arising from the imaging device. We encode the unknown point sources and their intensities via a nonnegative measure and we propose a convex optimization program to find it. Assuming the device's point-spread function is component-wise decomposable, we show that the optimal solution is the true measure in the noiseless case, and it approximates the true measure well in the noisy case with respect to the generalized Wasserstein distance. Our main assumption is that the components of the point-spread function form a Tchebychev system ($T$-system) in the noiseless case and a $T*$-system in the noisy case, mild conditions that are satisfied by Gaussian point-spread functions. Our work is a generalization to all dimensions of the work (Eftekhari, Bendory, & Tang, 2021) where the same analysis is carried out in 2 dimensions. We resolve an open problem posed in (Schiebinger, Robeva, & Recht, 2018) in the case when the point-spread function decomposes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.