Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Transfer-learning for video classification: Video Swin Transformer on multiple domains (2210.09969v2)

Published 18 Oct 2022 in cs.CV, cs.AI, and cs.CL

Abstract: The computer vision community has seen a shift from convolutional-based to pure transformer architectures for both image and video tasks. Training a transformer from zero for these tasks usually requires a lot of data and computational resources. Video Swin Transformer (VST) is a pure-transformer model developed for video classification which achieves state-of-the-art results in accuracy and efficiency on several datasets. In this paper, we aim to understand if VST generalizes well enough to be used in an out-of-domain setting. We study the performance of VST on two large-scale datasets, namely FCVID and Something-Something using a transfer learning approach from Kinetics-400, which requires around 4x less memory than training from scratch. We then break down the results to understand where VST fails the most and in which scenarios the transfer-learning approach is viable. Our experiments show an 85\% top-1 accuracy on FCVID without retraining the whole model which is equal to the state-of-the-art for the dataset and a 21\% accuracy on Something-Something. The experiments also suggest that the performance of the VST decreases on average when the video duration increases which seems to be a consequence of a design choice of the model. From the results, we conclude that VST generalizes well enough to classify out-of-domain videos without retraining when the target classes are from the same type as the classes used to train the model. We observed this effect when we performed transfer-learning from Kinetics-400 to FCVID, where most datasets target mostly objects. On the other hand, if the classes are not from the same type, then the accuracy after the transfer-learning approach is expected to be poor. We observed this effect when we performed transfer-learning from Kinetics-400, where the classes represent mostly objects, to Something-Something, where the classes represent mostly actions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.