Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

The smallest 5-chromatic tournament (2210.09936v2)

Published 18 Oct 2022 in cs.DM and math.CO

Abstract: A coloring of a digraph is a partition of its vertex set such that each class induces a digraph with no directed cycles. A digraph is $k$-chromatic if $k$ is the minimum number of classes in such partition, and a digraph is oriented if there is at most one arc between each pair of vertices. Clearly, the smallest $k$-chromatic digraph is the complete digraph on $k$ vertices, but determining the order of the smallest $k$-chromatic oriented graphs is a challenging problem. It is known that the smallest $2$-, $3$- and $4$-chromatic oriented graphs have $3$, $7$ and $11$ vertices, respectively. In 1994, Neumann-Lara conjectured that a smallest $5$-chromatic oriented graph has $17$ vertices. We solve this conjecture and show that the correct order is $19$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.