Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explanations Based on Item Response Theory (eXirt): A Model-Specific Method to Explain Tree-Ensemble Model in Trust Perspective (2210.09933v3)

Published 18 Oct 2022 in cs.LG

Abstract: In recent years, XAI researchers have been formalizing proposals and developing new methods to explain black box models, with no general consensus in the community on which method to use to explain these models, with this choice being almost directly linked to the popularity of a specific method. Methods such as Ciu, Dalex, Eli5, Lofo, Shap and Skater emerged with the proposal to explain black box models through global rankings of feature relevance, which based on different methodologies, generate global explanations that indicate how the model's inputs explain its predictions. In this context, 41 datasets, 4 tree-ensemble algorithms (Light Gradient Boosting, CatBoost, Random Forest, and Gradient Boosting), and 6 XAI methods were used to support the launch of a new XAI method, called eXirt, based on Item Response Theory - IRT and aimed at tree-ensemble black box models that use tabular data referring to binary classification problems. In the first set of analyses, the 164 global feature relevance ranks of the eXirt were compared with 984 ranks of the other XAI methods present in the literature, seeking to highlight their similarities and differences. In a second analysis, exclusive explanations of the eXirt based on Explanation-by-example were presented that help in understanding the model trust. Thus, it was verified that eXirt is able to generate global explanations of tree-ensemble models and also local explanations of instances of models through IRT, showing how this consolidated theory can be used in machine learning in order to obtain explainable and reliable models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: