Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compiling Petri Net Mutual Reachability in Presburger (2210.09931v1)

Published 18 Oct 2022 in cs.LO

Abstract: Petri nets are a classical model of concurrency widely used and studied in formal verification with many applications in modeling and analyzing hardware and software, data bases, and reactive systems. The reachability problem is central since many other problems reduce to reachability questions. The reachability problem is known to be decidable but its complexity is extremely high (non primitive recursive). In 2011, a variant of the reachability problem, called the mutual reachability problem, that consists in deciding if two configurations are mutually reachable was proved to be exponential-space complete. Recently, this problem found several unexpected applications in particular in the theory of population protocols. While the mutual reachability problem is known to be definable in the Preburger arithmetic, the best known upper bound of such a formula was recently proved to be non-elementary (tower). In this paper we provide a way to compile the mutual reachability relation of a Petri net with $d$ counters into a quantifier-free Presburger formula given as a doubly exponential disjunction of $O(d)$ linear constraints of exponential size. We also provide some first results about Presburger formulas encoding bottom configurations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)