Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Importance Weighting Correction of Regularized Least-Squares for Covariate and Target Shifts (2210.09709v2)

Published 18 Oct 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: In many real world problems, the training data and test data have different distributions. This situation is commonly referred as a dataset shift. The most common settings for dataset shift often considered in the literature are {\em covariate shift } and {\em target shift}. Importance weighting (IW) correction is a universal method for correcting the bias present in learning scenarios under dataset shift. The question one may ask is: does IW correction work equally well for different dataset shift scenarios? By investigating the generalization properties of the weighted kernel ridge regression (W-KRR) under covariate and target shifts we show that the answer is negative, except when IW is bounded and the model is wellspecified. In the latter cases, a minimax optimal rates are achieved by importance weighted kernel ridge regression (IW-KRR) in both, covariate and target shift scenarios. Slightly relaxing the boundedness condition of the IW we show that the IW-KRR still achieves the optimal rates under target shift while leading to slower rates for covariate shift. In the case of the model misspecification we show that the performance of the W-KRR under covariate shift could be substantially increased by designing an alternative reweighting function. The distinction between misspecified and wellspecified scenarios does not seem to be crucial in the learning problems under target shift.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)