Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A stable local commuting projector and optimal $hp$ approximation estimates in ${\boldsymbol H}(\mathrm{curl})$ (2210.09701v2)

Published 18 Oct 2022 in math.NA and cs.NA

Abstract: We design an operator from the infinite-dimensional Sobolev space ${\boldsymbol H}(\mathrm{curl})$ to its finite-dimensional subspace formed by the N\'ed\'elec piecewise polynomials on a tetrahedral mesh that has the following properties: 1) it is defined over the entire ${\boldsymbol H}(\mathrm{curl})$, including boundary conditions imposed on a part of the boundary; 2) it is defined locally in a neighborhood of each mesh element; 3) it is based on simple piecewise polynomial projections; 4) it is stable in the ${\boldsymbol L}2$-norm, up to data oscillation; 5) it has optimal (local-best) approximation properties; 6) it satisfies the commuting property with its sibling operator on ${\boldsymbol H}(\mathrm{div})$; 7) it is a projector, i.e., it leaves intact objects that are already in the N\'ed\'elec piecewise polynomial space. This operator can be used in various parts of numerical analysis related to the ${\boldsymbol H}(\mathrm{curl})$ space. We in particular employ it here to establish the two following results: i) equivalence of global-best, tangential-trace-and curl-constrained, and local-best, unconstrained approximations in ${\boldsymbol H}(\mathrm{curl})$ including data oscillation terms; and ii) fully $h$- and $p$- (mesh-size- and polynomial-degree-) optimal approximation bounds valid under the minimal Sobolev regularity only requested elementwise. As a result of independent interest, we also prove a $p$-robust equivalence of curl-constrained and unconstrained best-approximations on a single tetrahedron in the ${\boldsymbol H}(\mathrm{curl})$-setting, including $hp$ data oscillation terms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.