Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A stable local commuting projector and optimal $hp$ approximation estimates in ${\boldsymbol H}(\mathrm{curl})$ (2210.09701v2)

Published 18 Oct 2022 in math.NA and cs.NA

Abstract: We design an operator from the infinite-dimensional Sobolev space ${\boldsymbol H}(\mathrm{curl})$ to its finite-dimensional subspace formed by the N\'ed\'elec piecewise polynomials on a tetrahedral mesh that has the following properties: 1) it is defined over the entire ${\boldsymbol H}(\mathrm{curl})$, including boundary conditions imposed on a part of the boundary; 2) it is defined locally in a neighborhood of each mesh element; 3) it is based on simple piecewise polynomial projections; 4) it is stable in the ${\boldsymbol L}2$-norm, up to data oscillation; 5) it has optimal (local-best) approximation properties; 6) it satisfies the commuting property with its sibling operator on ${\boldsymbol H}(\mathrm{div})$; 7) it is a projector, i.e., it leaves intact objects that are already in the N\'ed\'elec piecewise polynomial space. This operator can be used in various parts of numerical analysis related to the ${\boldsymbol H}(\mathrm{curl})$ space. We in particular employ it here to establish the two following results: i) equivalence of global-best, tangential-trace-and curl-constrained, and local-best, unconstrained approximations in ${\boldsymbol H}(\mathrm{curl})$ including data oscillation terms; and ii) fully $h$- and $p$- (mesh-size- and polynomial-degree-) optimal approximation bounds valid under the minimal Sobolev regularity only requested elementwise. As a result of independent interest, we also prove a $p$-robust equivalence of curl-constrained and unconstrained best-approximations on a single tetrahedron in the ${\boldsymbol H}(\mathrm{curl})$-setting, including $hp$ data oscillation terms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.