Papers
Topics
Authors
Recent
2000 character limit reached

Towards Fair Classification against Poisoning Attacks (2210.09503v1)

Published 18 Oct 2022 in cs.LG and cs.CR

Abstract: Fair classification aims to stress the classification models to achieve the equality (treatment or prediction quality) among different sensitive groups. However, fair classification can be under the risk of poisoning attacks that deliberately insert malicious training samples to manipulate the trained classifiers' performance. In this work, we study the poisoning scenario where the attacker can insert a small fraction of samples into training data, with arbitrary sensitive attributes as well as other predictive features. We demonstrate that the fairly trained classifiers can be greatly vulnerable to such poisoning attacks, with much worse accuracy & fairness trade-off, even when we apply some of the most effective defenses (originally proposed to defend traditional classification tasks). As countermeasures to defend fair classification tasks, we propose a general and theoretically guaranteed framework which accommodates traditional defense methods to fair classification against poisoning attacks. Through extensive experiments, the results validate that the proposed defense framework obtains better robustness in terms of accuracy and fairness than representative baseline methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.