Papers
Topics
Authors
Recent
2000 character limit reached

Multi-granularity Argument Mining in Legal Texts (2210.09472v2)

Published 17 Oct 2022 in cs.CL and cs.IR

Abstract: In this paper, we explore legal argument mining using multiple levels of granularity. Argument mining has usually been conceptualized as a sentence classification problem. In this work, we conceptualize argument mining as a token-level (i.e., word-level) classification problem. We use a Longformer model to classify the tokens. Results show that token-level text classification identifies certain legal argument elements more accurately than sentence-level text classification. Token-level classification also provides greater flexibility to analyze legal texts and to gain more insight into what the model focuses on when processing a large amount of input data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.