Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reconstruction Attack on Differential Private Trajectory Protection Mechanisms (2210.09375v1)

Published 17 Oct 2022 in cs.CR

Abstract: Location trajectories collected by smartphones and other devices represent a valuable data source for applications such as location-based services. Likewise, trajectories have the potential to reveal sensitive information about individuals, e.g., religious beliefs or sexual orientations. Accordingly, trajectory datasets require appropriate sanitization. Due to their strong theoretical privacy guarantees, differential private publication mechanisms receive much attention. However, the large amount of noise required to achieve differential privacy yields structural differences, e.g., ship trajectories passing over land. We propose a deep learning-based Reconstruction Attack on Protected Trajectories (RAoPT), that leverages the mentioned differences to partly reconstruct the original trajectory from a differential private release. The evaluation shows that our RAoPT model can reduce the Euclidean and Hausdorff distances between the released and original trajectories by over 68% on two real-world datasets under protection with $\varepsilon \leq 1$. In this setting, the attack increases the average Jaccard index of the trajectories' convex hulls, representing a user's activity space, by over 180%. Trained on the GeoLife dataset, the model still reduces the Euclidean and Hausdorff distances by over 60% for T-Drive trajectories protected with a state-of-the-art mechanism ($\varepsilon = 0.1$). This work highlights shortcomings of current trajectory publication mechanisms, and thus motivates further research on privacy-preserving publication schemes.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.