Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Data-Driven Observability Decomposition with Koopman Operators for Optimization of Output Functions of Nonlinear Systems (2210.09343v1)

Published 17 Oct 2022 in math.OC, cs.SY, eess.SY, math.DG, and q-bio.MN

Abstract: When complex systems with nonlinear dynamics achieve an output performance objective, only a fraction of the state dynamics significantly impacts that output. Those minimal state dynamics can be identified using the differential geometric approach to the observability of nonlinear systems, but the theory is limited to only analytical systems. In this paper, we extend the notion of nonlinear observable decomposition to the more general class of data-informed systems. We employ Koopman operator theory, which encapsulates nonlinear dynamics in linear models, allowing us to bridge the gap between linear and nonlinear observability notions. We propose a new algorithm to learn Koopman operator representations that capture the system dynamics while ensuring that the output performance measure is in the span of its observables. We show that a transformation of this linear, output-inclusive Koopman model renders a new minimum Koopman representation. This representation embodies only the observable portion of the nonlinear observable decomposition of the original system. A prime application of this theory is to identify genes in biological systems that correspond to specific phenotypes, the performance measure. We simulate two biological gene networks and demonstrate that the observability of Koopman operators can successfully identify genes that drive each phenotype. We anticipate our novel system identification tool will effectively discover reduced gene networks that drive complex behaviors in biological systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.