Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vision Transformers provably learn spatial structure (2210.09221v1)

Published 13 Oct 2022 in cs.CV and cs.LG

Abstract: Vision Transformers (ViTs) have achieved comparable or superior performance than Convolutional Neural Networks (CNNs) in computer vision. This empirical breakthrough is even more remarkable since, in contrast to CNNs, ViTs do not embed any visual inductive bias of spatial locality. Yet, recent works have shown that while minimizing their training loss, ViTs specifically learn spatially localized patterns. This raises a central question: how do ViTs learn these patterns by solely minimizing their training loss using gradient-based methods from random initialization? In this paper, we provide some theoretical justification of this phenomenon. We propose a spatially structured dataset and a simplified ViT model. In this model, the attention matrix solely depends on the positional encodings. We call this mechanism the positional attention mechanism. On the theoretical side, we consider a binary classification task and show that while the learning problem admits multiple solutions that generalize, our model implicitly learns the spatial structure of the dataset while generalizing: we call this phenomenon patch association. We prove that patch association helps to sample-efficiently transfer to downstream datasets that share the same structure as the pre-training one but differ in the features. Lastly, we empirically verify that a ViT with positional attention performs similarly to the original one on CIFAR-10/100, SVHN and ImageNet.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube