Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Pseudo-OOD training for robust language models (2210.09132v1)

Published 17 Oct 2022 in cs.CL

Abstract: While pre-trained large-scale deep models have garnered attention as an important topic for many downstream NLP tasks, such models often make unreliable predictions on out-of-distribution (OOD) inputs. As such, OOD detection is a key component of a reliable machine-learning model for any industry-scale application. Common approaches often assume access to additional OOD samples during the training stage, however, outlier distribution is often unknown in advance. Instead, we propose a post hoc framework called POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data. The model is fine-tuned by introducing a new regularization loss that separates the embeddings of IND and OOD data, which leads to significant gains on the OOD prediction task during testing. We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube